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Abstract—Smartphones provide an efficient means for the
collection of speech data; however, the quality of the corpora
created in this fashion is not predictable. We describe an approach
that allows us to post-process and rank utterances in a prompted
speech corpus quickly and effectively. Utterance ranking makesit
possible to both select those utterances with the highest likelihood
of being correct and to evaluate the quality of the resulting corpus
from a limited sample. This approach has been applied to a
collection in the eleven official languages of South Africa, and we
show that it naturally leads to the creation of stratified corpora
from the same collection. Such corpora can be useful for different
purposes, and corpus users are provided with the tools to extract
these easily: from small, highly accurate corpora to larger corpora
that are likely to contain more errors.

Index Terms: speech corpora, automatic speech recognition,
confidence scoring

I. I NTRODUCTION

The widespread availability of internet connectivity and
smartphones has stimulated the development of novel ap-
proaches to data collection [1], [2], which use the smartphone
device both to prompt participants with text and to record
the resulting speech. This approach can lead to the rapid
and efficient collection of substantial amounts of speech,
along with the prompting text that can be viewed as baseline
transcriptions for these recorded utterances.

Experience with smartphone data collection in several
languages has shown that speech corpora collected in this
fashion are directly usable for the training of automatic speech
recognition (ASR) systems [1], [2]. Even though various fac-
tors may cause deviations between the prompted text and the
recorded speech, such differences are generally small enough
not to disrupt the training of acoustic models for ASR [2].
However, there are several reasons why it may be preferable
to create a corpus with a more controlled level of audio and
transcription quality:

• In order to evaluate the performance of ASR and other
systems, the transcriptions serve as “ground truth”,
and therefore need to be suitably reliable.

• For linguistic studies, for example on the acoustic
phonetics of the target language, reliable transcriptions
can eliminate confusion and improve the robustness of
analyses.

• As the proportion of errors increases (e.g. because of
limitations in the literacy levels of participants), we
are likely to reach a stage where ASR accuracy can
be improved by eliminating or improving inaccurate
transcriptions.

Of course, the conventional solution to this problem is to
employ human transcription in order to create an orthograph-
ically transcribed corpus with very high reliability. However,
the cost of such transcription is prohibitive for many resource-
constrained applications, and the resulting accuracy may be
excessive for the types of applications mentioned above. It
is therefore clear that a method to create quality-controlled
speech corpora from smartphone-collected data with limited
human effort would be of great practical value, especially for
application in under-resourced languages.

Below, we first summarize some of the previous research
related to this task. Section III describes the input data that was
utilized as well as the approach that we have taken. The results
obtained with eleven South African languages are summarized
in Section IV. In the concluding section we discuss some
of the implications of this work, and suggest extensions and
improvements.

II. BACKGROUND

As motivated above, the prompts that are provided to
participants during data collection cannot be used directly as
transcriptions for a high-reliability corpus, since discrepancies
between recorded audio and the corresponding prompt text
arise from factors such as reader errors or disfluencies, back-
ground noise, and issues with the recording device. Hence,
our goal was to convert this list of recordings and associated
prompts into a usable corpus by two main mechanisms:

• The elimination of those recordings that clearly do not
correspond to the prompted text.

• The addition of noise markers to the transcriptions of
recordings that contain additional sounds beyond the
prompted text.

The first task is essentially a case ofconfidence scoring,
which has been studied in great detail in the speech-recognition
literature. Several of these approaches are summarized in [3],
where it is also shown that this particular instance of confi-
dence scoring has somewhat unique characteristics compared
to other applications that have appeared in the literature.In [3]
an algorithm that we call phone-based dynamic programming
(PDP) is shown to be particularly well suited to the current
task.

PDP assumes that the corresponding prompt-utterance pairs
contain exactly the same phrases, and scores how accurate
the match between audio and text is. However, we often find
that the recordings differ from the prompts in predictable
ways - for example, the speaker may stutter, or repeat a



word, or background noise may intrude into the recording.
Such utterances will, correctly, be rejected by PDP in general,
since the discrepancy between text and audio is substantial.
However, these utterances contain much useful speech, and we
realized that we could recover that speech (for most speech-
processing purposes) by marking the extraneous sounds (which
could arise from speech or some other acoustic source) as
“noise”. We have developed a specializedgarbage modelfor
this purpose, which is briefly summarized in Section III and
motivated in more detail in [4].

III. I NPUT DATA AND APPROACH

Our development started withWoefzela-collected speech
in the official languages of South Africa, which had been
developed at the Meraka Institute[2]. Speakers were prompted
to read approximately 500 short prompts each, which had been
extracted from text corpora in order to maximize variability of
phonemic contexts present in the text[2]. After some initial
pre-filtering, we had a set of baseline corpora, nine of which
contained speech from exactly 210 first-language speakers
each, whereas the other two languages had somewhat fewer
speakers. The statistics of these initial corpora – referred to as
theNCHLT-baselinecorpora from here onwards – are provided
in Table I. From these baseline corpora, a set ofNCHLT-
clean sub-corpora are selected: the selection process aims to
select utterances that are likely to be transcribed with high
accuracy (> 95% word accuracy). (By prior agreement with
the sponsors of the corpus, we aimed for clean corpora of 50
to 60 hours of speech per language.)

TABLE I. SUMMARY OF BASELINE CORPORA(NCHLT-baseline) USED

FOR DEVELOPMENT; CORPUS DURATIONS ARE IN HOURS.

Language Speakers Males Females Duration
Afrikaans 210 107 103 100.6
English 210 100 110 87.0
isiNdebele 148 78 70 101.8
isiXhosa 210 107 103 165.0
isiZulu 210 98 112 157.2
Sepedi 210 100 110 122.6
Sesotho 210 113 97 133.5
Setswana 210 109 101 128.3
Siswati 198 96 102 139.3
Tshivenda 210 84 126 154.8
Xitsonga 200 95 105 142.6

As discussed above, we employedgarbage modelingand
PDP scoringin order to insert “noise” markers and select well-
spoken utterances (relative to the prompted text), respectively.
Both of these approaches require a speech-recognition system
for their operation, and we employed the HTK toolkit [5]
to develop baseline recognizers in each of the languages,
training on a randomly selected subset of 190 speakers (but
128 for isiNdebele and 178 for Siswati) and using the other
20 speakers as development set for parameter tuning and
performance monitoring. A standard 3-state left to right HMM
architecture was used to model context-dependent triphones
in each language. As acoustic features, 39-dimensional Mel
Frequency Cepstral Coefficients were used: 13 static coeffi-
cients with cepstral mean normalization applied, 13 delta and
13 double delta coefficients. Triphones were tied at the state
level using decision tree clustering, and each tied-state triphone
was estimated with 8 Gaussian mixtures per state. Semi-tied
transforms were also employed throughout.

The garbage modelused during alignment is based on a
background model that can be inserted between any pair of
words. The garbage model is a 3-state global HMM, with 16
mixtures per state. Apart from the number of mixtures, it is
trained using the same parameters and features as models of the
general recognizer, but on all the data (that is, an independent
training cycle, using the same data as the general recognizer).
After initial training, this model is then extended by adding a
short pause model in parallel. This model is implemented as
an HTK tee-model (free transition from entrance to exit state),
with transitions allowed to, from and between the 3-state global
model and the fourth short pause state. The result is a general
model which can absorb large spoken sections and/or silence,
or can be skipped completely.

During corpus development, we employ our initial acous-
tic models (in each language) to perform forced alignment
between the prompted text and the recorded utterance. (The
pronunciation dictionaries used for this purpose were extended
versions of those described in [6] and related publications.)
Frames that are matched by the garbage model are marked as
such, and if the “garbage” frames correspond to at least five
phones in a standard phone-loop decode (during subsequent
PDP scoring), a noise symbol is inserted into the transcription.
Not all noise markers initially marked are therefore retained:
subsequent PDP scoring is used to flag valid instances of noise
and/or partial words, as described in more detail later in this
section.

These forced alignments, with optional noise markers, are
also used by the PDP scoring algorithm. For this step, we
perform phone recognition with an ergodic phone loop of
the same audio segment, and compare the phone strings with
the forced alignments to obtain a distance measure. We use
dynamic programming – with either a flat or a variable scoring
matrix – to map the one phone string to the other. The variable
scoring matrix allows us to penalize more probable recognition
errors less severely than differences that are more likely to
be indicative of an unmatched text/audio segment. We then
normalize the resulting dynamic programming score and use
this as confidence score. While this measure is less grounded in
the standard Bayesian theory of ASR than those that estimatea
posterior probability of the presumed transcription, it islikely
to be less fragile in environments where the acoustic modelsdo
not match the acoustics of the target utterances very well [7]. In
detail, then, the PDP scoring process consists of the following
steps:

1) Free recognition is performed on the audio segment
using a phone-loop grammar in order to produce an
observed string.

2) An ASR-based alignment of the prompted text, with
possible inserted noise markers, produces areference
string.

3) The phone set is simplified, and both the observed and
reference string are mapped to the simplified phone
set. Specifically, compound phones (such as affricates
or diphthongs) are split into their constituent parts,
and a few rare phones mapped to their closest coun-
terparts.

4) A standard dynamic programming algorithm (with a
pre-calculated scoring matrix - see [3] for details) is
used to align the observed and reference string with



each other. Noise symbols can be matched against any
phoneme at zero cost, since those may correspond to
arbitrary insertions.

5) The resulting score obtained from the best dynamic
programming path is normalized by the number of
phones in the alignment (ignoring noise symbols).

Related algorithms have been proposed by several authors –
possibly the earliest systematic exploration of this classof
algorithms was performed by Ng and Zue [8].

This process – training of initial acoustic models, detection
of potential discrepancies between text and audio with a
garbage model, and scoring of utterances with PDP – was
executed on each of the eleven baseline collections. Of course,
this process could be iterated: the cleaned corpus could be used
to train new acoustic models, which could be used to repeat the
subsequent segmentation and scoring steps. However, we have
found that changes after the first iteration are relatively small
if reasonable initial transcriptions are employed [4]; hence, it
is doubtful whether additional iterations would be worthwhile.

We next summarize various measurements that describe the
corpora that were developed using these methods.

IV. M EASUREMENTS OF CORPUS SIZE AND QUALITY

The PDP scoring algorithm is designed to provide a rank
ordering of recorded utterances: utterances with larger scores
are more likely to contain dictionary-expected enunciations of
the prompted text, and as scores become progressively lower,
errors are increasingly likely to occur. We have verified this
to be the case (see [3] as well as Figs. 2 and 3 below).
Hence, the duration of utterances that exceed a given PDP
score is a good indication of the amount of speech that meets
or exceeds the corresponding quality measure, where “quality”
accounts for both the acoustic quality of the utterance and
the match between the speech and the transcribed text. Fig.
1 shows this curve for each of the languages in our corpora.
All these graphs show comparable behaviors: the number of
utterances above a certain threshold increases gradually as the
threshold is decreased, and in each language there is a much
smaller “tail” of utterances with very low PDP scores (−2.5 or
less). These utterances should definitely not be included inthe
corpus, as they are likely to contain one or more of the errors
described in Section III. We also see that the targeted corpus
size (50 to 60 hours of recordings) places us well outside of
the low-quality tail in each of the languages. We decided to
retain approximately 56 hours of speech in each language; that
allows us to accept only utterances with PDP scores above
approximately−1.3 in English and isiNdebele, with larger
PDP thresholds being employed in the other languages.

With this selection process complete, it remains to deter-
mine how accurately the selected utterances were produced.As
we discuss below, the definition of “accuracy” in this context
is rather complex; we have therefore developed an evaluation
protocol that allows us to arrive at reasonable estimates, using
a set of carefully annotated evaluation utterances.

A. Evaluation protocol

For the evaluation process, we manually validated 400
randomly selected utterances in a sampling of languages. As
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additional words, and no poorly pronounced words or reading
errors. In this case, the only difference between “strict” and
“harvest” scoring is that utterances containing close matches
are rejected or accepted, respectively. Insertions are deemed
acceptable if the garbage model is employed.

Corpus validation is performed by accepting all words that
exceed a selected threshold and determining to what extent
this automatic accept/reject decision matches the manually
generated accept/reject decision. As we can trade off be-
tween sensitivity and specificity by adjusting the automatic
accept/reject threshold, we evaluate the effectiveness ofour
scoring technique for each threshold setting, and first use a
Detection-Error Trade-off (DET) curve to plot the fractionof
correctly detected acceptable words against the percentage of
correctly rejected unacceptable words. (The closer to the top
right-hand corner the curve, the more effective the technique.)

B. Results

Figs. 2 and 3 demonstrate the performance achieved for
isiNdebele and Afrikaans. As the PDP threshold is increased,
corpus selection becomes stricter, identifying and rejecting an
increasing number of true errors. At the same time, less and
less of the correct portion of the corpus is accepted. Curvesare
shown for different types of PDP scoring: using a flat matrix or
a trained matrix, and employing strict or harvest scoring. (All
curves are shown for scores extracted after phone splittingand
before the garbage model is employed - these generate fairly
similar DET curves.) We see that there is some variability
between the acceptance / rejection performance achieved in
the different languages: for example, when using strict scoring
in Afrikaans we are able to reject almost90% of the erroneous
utterances, while still retaining about70% of the correct
utterances, whereas a similar rejection level in isiNdebele
entails that somewhat more than40% of the correct utterances
will be retained. Similarly, when using harvest scoring,90% of
erroneous utterances are rejected while retaining almost90%

of the correct utterances in Afrikaans, and75% of the correct
utterances in isiNdebele.
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Fig. 2. DET curve for isiNdebele using strict or harvest scoring, and
employing either a flat or trained PDP matrix.

Fortunately, the fraction of correctly-recorded utterances
is sufficiently high for good word accuracies to result from
the levels of rejection performance that we have achieved. At
the thresholds used for corpus selection, very high accuracies
are observed: approximately97.3%−98.5% when using strict
scoring,99.4%− 99.7% when using harvest scoring. Table II
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Fig. 3. DET curve for Afrikaans using strict or harvest scoring, and employing
either a flat or trained PDP matrix.

lists the word accuracies that were achieved for the above-
threshold utterances in our various evaluation sets.

TABLE II. W ORD ACCURACIES OF SAMPLED UTTERANCES,
ACCORDING TO TWO DIFFERENT DEFINITIONS OF“ CORRECTNESS”

Language Strict Harvest
Afrikaans 97.80 99.38
English 97.68 99.40
isiNdebele 97.30 99.56
Sepedi 98.34 99.60
Sesotho 97.76 99.47
Setswana 98.54 99.74

Based on the analysis described above, the following
corpora were prepared for public release by the South African
Resource Management Agency:

1) NCHLT-clean: the eleven 56-hour corpora described
in Section III.

2) NCHLT-baseline: the full baseline corpora, also de-
scribed in Section III, with corpus statistics as in
Table I.

3) NCHLT-raw: the total set of usable data collected,
including repeated speakers and utterances.

V. CONCLUSION

We have shown that a suitable approach to confidence
scoring, combined with garbage modeling, can be used to
create corpora with well-defined transcription accuraciesout
of smartphone-collected speech data. Since this approach does
not require sophisticated language modeling, it is particularly
suitable for the development of speech corpora in under-
resourced languages. Using a strict definition of accuracy,
we estimate that the word error rates in our transcriptions
range between 1.5% and 2.7%. Clearly, these values depend
on the details of the collection process, prompting materials,
participant population, and other factors. Thus, the accuracies
that will be achieved if similar methods are employed in other
circumstances will be somewhat unpredictable, and it will gen-
erally be necessary to label a small set of utterances manually
in order to estimate the accuracy achieved. However, this “gold
standard” set can be much smaller than the overall corpus –
we have employed sets of 400 utterances per language, and
these could each be scored in less than an hour.

The approach we have described is unbalanced between
insertions and deletions of speech: with the garbage model,we



are able to detect and correct for inserted speech, but deleted
segments of the prompted text are simply marked as errors.
This is reasonable in our collection, since insertion errors are
more frequent, but it should be reasonably straightforwardto
increase the efficiency of harvesting without compromising
quality by detecting deleted words or even partial words.

It would be interesting to investigate the characteristics
of our approach under significantly different circumstances.
In particular, we have not seen any benefit to excluding
any utterances from ASR training, but it is clear that such
benefit will be available if the fraction of errorful recordings
becomes large. With data collections in more challenging
environments, it should be possible to study this transition.
We also look forward to seeing how our corpora are used by
speech technologists and linguists; such usage will hopefully
give us further guidance on how to adjust our methodology.
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